

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Review

Ozone therapy for the treatment of COVID-19 pneumonia: a scoping review

Morteza Izadi, Luca Cegolon, Mohammad Javanbakht, Ali Sarafzadeh, Hassan Abolghasemi, Gholamhossein Alishiri, Shi Zhao, Behzad Einollahi, Mandana Kashaki, Nematollah Jonaidi-Jafari, Mosa Asadi, Ramezan Jafari, Saeid Fathi, Hassan Nikoueinejad, Mehrdad Ebrahimi, Sina Imanizadeh, Amir Hosein Ghazale

Please cite this article as: M. Izadi, L. Cegolon, M. Javanbakht, A. Sarafzadeh, H. Abolghasemi, G. Alishiri, S. Zhao, B. Einollahi, M. Kashaki, N. Jonaidi-Jafari, M. Asadi, R. Jafari, S. Fathi, H. Nikoueinejad, M. Ebrahimi, S. Imanizadeh, A. Hosein Ghazale, Ozone therapy for the treatment of COVID-19 pneumonia: a scoping review, *International Immunopharmacology* (2020), doi:<https://doi.org/10.1016/j.intimp.2020.107307>

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier B.V. All rights reserved.

Review Article

Ozone therapy for the treatment of COVID-19 pneumonia: a scoping review.

Running head: Ozone therapy for COVID-19

Morteza Izadi¹, Luca Cegolon², Mohammad Javanbakht^{3*}, Ali Sarafzadeh^{1*}, Hassan Abolghasemi⁴. Gholamhossein Alishiri⁵, Shi Zhao⁶, Behzad Einollahi³, Mandana Kashaki⁷, Nematollah Jonaidi-Jafari¹, Mosa Asadi³, Ramezan Jafari⁸, Saeid Fathi⁹, Hassan Nikoueinejad³, Mehrdad Ebrahimi³, Sina Imanizadeh¹⁰, Amir Hosein Ghazale¹⁰

¹Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

²Local Health Unit N. 2 "*Marca Trevigiana*" ,Public Health Department, Treviso, Italy

³Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

⁴Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran and Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran

⁵Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

6 JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China

⁷Shahid Akbarabadi Clinical Research Development, Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran

⁸Department of Radiology, Baqiyatallah University of Medical Sciences, Tehran, Iran

⁹Fellowship, Tehran University, Tehran, Iran

¹⁰Student Research Committee (SRC),Baqiyatallah University of Medical Sciences, Tehran, Iran

Correspondence:

Mohammad Javanbakht and Ali Sarafzadeh

Nephrology and Urology Research Center

Baqiyatallah University of Medical Sciences,

Tehran, Iran

Email: mhmjvbt81@gmail.com

ABSTRACT

Severe forms of COVID-19 can evolve into pneumonia, featured by acute respiratory failure due to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In viral diseases, the replication of viruses is seemingly stimulated by an imbalance between pro-oxidant and antioxidant activity as well as by the deprivation of antioxidant mechanisms. In COVID-19 pneumonia, oxidative stress also appears to be highly detrimental to lung tissues. Although, inhaling ozone (O3) gas has been shown to be toxic to the lungs, recent evidence suggests that its administration via appropriate routes and at small doses can paradoxically induce an adaptive reaction capable of decreasing the endogenous oxidative stress. Ozone therapy is recommended to counter the disruptive effects of severe COVID-19 on lung tissues, especially if administered in early stages of the disease, thereby preventing the progression to ARDS.

Keywords: COVID-19, pneumonia, ARDS, ALI, oxidative stress, ozone (O3) the

1.INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), coronavirus disease 2019 (Covid-19), rapidly spread worldwide to become a pandemic on March 11, 2020 [1-3].

Seven coronavirus strains discovered thus far can cause infectious disease in humans. Whilst strains 229E, HKU1, OC43 and NL63 cause mild respiratory diseases, often presenting with common cold symptoms, the other three types can determine severe infectious diseases and include:

- The Severe Acute Respiratory Syndrome Coronavirus type 1 (SARS-CoV-1), which was associated with an outbreak in Hong Kong and elsewhere during 2002-2003 [4, [5\]](#page-9-0);
- The Middle East Respiratory Syndrome Coronavirus (MERS-CoV), first appeared in 2012 and is still circulating among certain animals such as camels, mainly in the Middle-East [6]; and
- SARS-CoV-2.

There are high similarities between the latter three human coronaviruses, with SARS-CoV-2 sharing 51.8% and 79% nucleotide homology with MERS-CoV and SARS-CoV-1 [\[7\]](#page-9-1).

The clinical pattern of COVID-19 varies extensively from mild/moderate (81%) to severe (14%) or critical (5%) [9, 10, 11]. Among 2,634 hospitalized patients with confirmed COVID-19 in New York City, Long Island and Westchester County from March 1 to April 4, 2020, 14.2% needed admission to intensive care units (ICUs), with invasive mechanical ventilation required in 12.2% of them [[12](#page-10-0)]. Despite a mortality rate of approximately 2.3% - considerably lower than MERS-CoV (35%) - the base reproductive number (Ro) of SARS-CoV- 2 has been estimated to fall between 2 and 3, similar to SARS-CoV-1 (Ro=1.95) but much higher than MERS-CoV (Ro=0.5). SARS-CoV-2 is therefore more contagious as compared with MERS-CoV [12 [13,14], especially since asymptomatic/pre-symptomatic COVID-19 patients can shed high loads of virus in the surrounding environment [10]. In a recent metaanalysis on 28 high/moderate quality studies including cohorts or studies testing individuals irrespective of their COVID-19 symptoms, or case series with tracking report of asymptomatic patients, 8.7% study subjects were found to be COVID-19 positive. The percentage of asymptomatic in the latter metanalysis was 20% to 75% among COVID-19 confirmed cases [8].

In a viewpoint just published in JAMA, Kim et al., urgently called for new outpatients' therapies which, combined with an effective vaccine, could significantly contribute to end this ongoing COVID-19 pandemic [15]. Whilst some drugs (especially corticosteroids) are currently used against severe COVID-19, therapeutic remedies for initial/moderate COVID-19 pneumonia are still missing. Treatments effective in early stage COVID-19 pneumonia could have a significantly impact on patients' prognosis, reduction of hospital admissions, prevention of long-term sequelae and containment of the communicability window of COVID-19, hence reducing the respective risk of infection [15]. Leading candidates for COVID-19 treatment examined by Kim et al., included emerging antivirals, immunomodulatory drugs and antibody-based immunotherapy, with ozone (O3) being neglected [15].

Ozone is a triatomic unstable gas composed of 3 oxygen (O2) molecules featured by a 1h half time, rapidly reverting to O2 at ambient temperature [16]. Ozone has potent oxidizing activity and already proved effective cidal effect against bacteria, fungi and viruses [17-19], including SARS-CoV-1 [20], through oxidation of double bonds [16].

For its immunomodulatory and anti-inflammatory properties Ozone has also recently been suggested as potential, inexpensive and easily available adjuvant therapy also against CODVI-19, especially in mild to moderate pneumonia, to prevent the progression to critical disease [21,22].

In this study we conducted a scoping review of the evidence on the potential application of ozone (O_3) to treat/prevent the severe forms of COVID-19.

2. METHODS

Searching strategy

PubMed, Scopus, Google Scholar, Web of Science and Cochrane library were searched using the following keywords: "COVID-19 Infection AND oxidative stress"; "SARS-CoV-2 AND oxidative stress"; "Infectious disease AND oxidative stress"; "Inflammation AND oxidative stress"; "Viral disease AND oxidative stress"; "Pneumonia AND oxidative stress"; "Ozone (therapy) AND Oxidative Stress"; "Ozone (therapy) AND pneumonia"; "Ozone (therapy) AND Viral Disease"; "Ozone (therapy) AND COVID-19"; "ozone therapy AND SARS-CoV-2"; "Ozone (therapy) AND Inflammation"; "Ozone (therapy) AND acute lung injury (ALI) "; "Ozone (therapy) and Acute Respiratory Distress Syndrome (ARDS) "; "Ozone (therapy) and ARDS"; "Ozone (therapy) AND Severe Acute Respiratory Syndrome"; "Ozone (therapy) AND SARS"; "Ozone (therapy) AND cytokines"; "Angiotensin-Converting Enzyme-2 (ACE2) receptor AND Oxidative stress". Retrieved items were screen by title and abstract. Only articles in English were considered; dissertations, conference abstracts and duplicate publications were discarded.

3. DISCUSSION

3.1. Viral Diseases and Oxidative Stress

In viral diseases, the replication of viruses is seemingly influenced by an imbalance between prooxidant and antioxidant activity as well as by the deprivation of antioxidant mechanisms [23]. In an experimental animal model, SARS-CoV-1 infection was found to be linked to elevated reactive oxygen species (ROS) levels and disruption of antioxidant defences [\[24](#page-10-1)]. Hypoxia, that can be caused by viral sepsis, produces ROS such as superoxide radicals [[25-28](#page-10-2)]. Increased oxidative stress is severely damaging for the lung, causing acute respiratory failure sustained by ALI and ARDS, featured by considerably high mortality and morbidity [\[29](#page-11-0), 30]. ALI/ARDS also characterize patients affected by severe/critical COVID-19, especially those referred to ICUs, where multiple factors such as hypoxemia, inflammation and mechanical ventilation with high fractions of inhaled $O₂$ magnify oxidant generation [[31,](#page-11-1) 32]. Elevated High Sensitivity C-Reactive Protein (hsCRP), an indicator of inflammation and oxidative stress, has been found in 93% of patients affected by COVID-19 pneumonia [[33\]](#page-11-2).

3.2. Renin-Angiotensin-Aldosterone System (RAAS) and oxidative stress

The RAAS seems to be involved in the pathogenesis of severe ALI. SARS-CoV-1 is capable of binding to the Angiotensin-Converting Enzyme-2 (ACE2) through its spike protein (**Fig 1**), downregulating its expression, which would have a physiological protective effect against ALI [[34\]](#page-11-3). Likewise, SARS-CoV-2 also exploits the ACE2 receptor for cell internalization [\[35](#page-11-4)].

The carboxypeptidase ACE2 is a crucial element of RAAS for the control of blood pressure [36,37]. It seems that Angiotensin-Converting Enzyme (ACE) and ACE2 antagonize with each other [[37\]](#page-11-5). Angiotensin I (AT1) and angiotensin II (AT2) are converted by ACE2 into the inactive molecule angiotensin 1–9 and angiotensin 1–7, respectively [\[38](#page-11-6)]. Angiotensin 1-7 has anti-proliferative and vasodilatory effects and reduces the oxidative stress [\[39](#page-11-7)]. As mentioned above, some critically ill patients with COVID-19 develop ALI and ARDS, which lead to pulmonary oedema and lung failure [[40,](#page-11-8) [41\]](#page-11-9). In the pathogenesis of ALI, ACE upregulates AT2, which in turn causes severe lung injury through binding with the AT2 subtype 1a receptor [\[34](#page-11-3)]. AT2 has potent vasoconstrictor effects and induces oxidative stress [[42\]](#page-11-10) predominantly through activation of NADPH oxidase, one of the most prominent producers of superoxide radical [\[43](#page-11-11)]. The serum level of AT2 is reported to be considerably elevated in COVID-19 patients and exhibits a positive linear correlation with viral load and lung injury [[44\]](#page-11-12). By contrast, increasing levels of ACE2 and AT2 receptors had a protective effect in vitro against lung injury induced by SARS-CoV-1, MERS-CoV and SARS-CoV-2 [[34,](#page-11-3) [44-46\]](#page-11-12).

3.3. Inflammation and oxidative stress

In severe forms of COVID-19 a phenomenon known as 'cytokines storm' can be observed [\[40](#page-11-8)]. The increased levels of cytokines such as Monocyte Chemotactic Protein 1 (MCP1), IFN-γ-inducible protein 10, IFN-γ, IL-1β, IL-6 and IL-18, which has been found in lymphoid tissues, blood and lungs of COVID-19 patients, point toward an increased activity of the inflammasome [\[47-49\]](#page-11-13). The inflammasome, a protein complex of the cytosol, is one of the first components of the host innate immunity, involved in anti-viral responses by mediating the secretion of pro-inflammatory cytokines [[50\]](#page-12-0). Rather than directly recognizing pathogenic elements, NLRP3 (NOD-, LRR- and pyrin domaincontaining protein 3) the inflammasome appears to detect pathogenic-induced oxidative stress [[51\]](#page-12-1). Nonetheless, it seems that SARS-CoV-1 directly encodes some of the known activators of NLRP3 inflammasome such as the envelope (E) protein, ORF8b, and ORF3a, which share respectively 95%, 40%, and 72% amino acid sequence with their counterpart molecules in SARS-CoV-2 [52, 53]. Significantly increased levels of NLRP3 inflammasome in leukocytes of affected lung areas have recently been reported in fatal COVID-19 pneumonia [54].

Similar to SARS-CoV-2, an excessive release of proinflammatory cytokines has been reported for SARS-CoV-1 [\[55,56\]](#page-12-2). A number of COVID-19 patients not presenting ARDS show signs of extrapulmonary tissue damage (e.g. elevated creatinine and liver enzymes), possibly due to proinflammatory cytokine storm [[57\]](#page-12-3).

The generation of ROS-dependent respiratory burst is one of the mechanisms used by activated phagocytic cells such as neutrophils to suppress microbes during inflammation processes [58]. However, dysregulated interactions between ROS and inflammation may be linked to the pathogenesis of cytokine storm caused by COVID-19 (**Fig 1**). While inflammation enhances ROS levels, increased levels of ROS in turn can boost inflammation, thereby creating a vicious circle [[59\]](#page-12-4). The hyperinflammatory state sustained by phagocytes likely explain the diffuse alveolar lesions with potential emphysema and even pneumothorax observed in critical COVID-19 pneumonia. On the other hand, it is hypothesized that ROS is implicated in activating the NLRP3 inflammasome [\[60-62\]](#page-12-5).

3.4. COVID-19 risk factors and Oxidative stress

The risk of ARDS and related COVID-19 mortality increases with patients' age [[63\]](#page-12-6), which is associated with both cumulative damage caused by oxidative stress and reduced antioxidant activity [[64,](#page-12-7) [65\]](#page-12-8). Results of a study on gene expression of type II pneumocytes revealed that the most downregulated gene in the elderly subjects is that encoding the superoxide dismutase 3 (SOD3). Genes encoding other molecules with antioxidant activity were also found to be downregulated in this population [\[66](#page-12-9)].

Oxidative stress and ROS are also key factors involved in pathological processes such as diabetes [[67\]](#page-12-10), hypertension [[68\]](#page-13-0), Chronic Obstructive Pulmonary Disease [[69\]](#page-13-1), obesity [70,71, cancer [\[72-74\]](#page-13-2), AIDS [[75\]](#page-13-3) and cardiovascular disease [\[76](#page-13-4), [77\]](#page-13-5). Comorbidities, which increase linearly with age, in turn, enhances the risk of severe COVID-19 [\[68-80\]](#page-13-6).

3.5. COVID-19 and Oxidative stress

A few investigations assessed the induction of oxidative stress due to COVID-19. A recent study reported increased serum levels of sNox2-dp, a NADPH oxidase activation marker in COVID-19 patients in comparison with healthy individuals [[81\]](#page-13-7). Furthermore, higher serum levels of sNox2-dp have been reported among ICU patients as compared to non-ICU patients [81].

Cellular ROS were considerably increased in human promonocyte cells expressing SARS-CoV-1 3CLpro (viral 3-chymotrypsin-like cysteine protease) [\[82](#page-13-8)]. There is 99.02 % homology between sequences of SARS-CoV-2 3CL^{pro} and SARS-CoV-1 3CL^{pro}[\[83](#page-13-9)], which further strengthens the argument that SARS-CoV-2 can cause oxidative stress.

Another remarkable finding is that serum albumin, which is considered a major component of serum antioxidant defence [[84\]](#page-13-10), is considerably decreased in patients suffering from COVID-19 [\[85](#page-13-11)], pointing towards a disruption of redox balance in these patients. Therefore, oxidative stress may be implicated in the pathogenesis of COVID-19 pneumonia (**Fig1**).

3.6. Ozone Therapy and oxidative stress

Although the inhalation of O_3 gas is very toxic for the lungs [\[86](#page-13-12)], recent evidence on O_3 biochemical activity has shown that its administration via appropriate routes and at small doses can paradoxically be involved in induction of an adaptive reaction capable of decreasing the endogenous oxidative stress [[87-90](#page-13-13)]. There is a growing consensus that an accurately adjusted oxidative stress has therefore the ability to boost the antioxidant activities.

Various experimental studies assessed the antioxidative effects of ozone therapy (Table 1), mostly in rats with ischemia-reperfusion injury (IRI) because oxidative stress largely contributes to IRI [91,92]. Hepatic [93,94], renal [95,96], intestinal [\[97](#page-14-0)], cochlear [\[98](#page-14-1)], retinal [[99\]](#page-14-2) and testicular [[100](#page-14-3)] tissues among others have been investigated so far. According to these studies, ozone therapy has a protective role against IRI by shifting the redox balance towards the antioxidant activity.

To date, the antioxidative effects of systemic ozone therapy have been studied (**Table 2**), both on healthy volunteers [[101-103](#page-14-4)] and patients with different clinical conditions such as rheumatoid arthritis (RA) [104], advanced non-small cell lung cancer [[105](#page-14-5)], coronary artery disease [106], myocardial infarction [107], heart failure [[108](#page-14-6)], multiple sclerosis [\[109\]](#page-15-0), multi-drug resistance TB [\[110\]](#page-15-1), diabetes [111, [112](#page-15-2)], knee osteoarthritis [\[113\]](#page-15-3), cancer patients under palliative care [\[114\]](#page-15-4), in addition to endothelial [\[115\]](#page-15-5) and HeLa cells [[116](#page-15-6)]. According to these studies, ozone therapy significantly increases the level of FRAP (Ferric Reducing Ability of Plasma), an indicator of total antioxidant capacity, as well as antioxidants (e.g., superoxide dismutase, glutathione peroxidase, glutathione, glutathione S-transferase, etc.). Furthermore, ozone therapy determines a decrease in the levels of oxidative stress markers, including peroxidation potential, total hydroperoxides, malondialdehyde, nitric oxide (NO) and advanced oxidation protein products (AOPP).

Systemic $O₃$ can be administered by different routes, such as major auto-hemotherapy, minor auto-hemotherapy and rectal insufflation, among others [\[117\]](#page-15-7). At therapeutic doses and with appropriate dose intervals, O_3 administration regulates multiple biochemical mechanisms mostly via the activation of secondary messengers [\[118\]](#page-15-8).

O₃ therapy stimulates the expression and activity of Nuclear erythroid 2-related factor 2 (Nrf2) [119]. It is argued that low dose ozone is capable of exerting anti-inflammatory and antioxidant activities by means of activating Nrf2, which contributes substantially to the effectiveness of O_3-O_2 treatments $[120-$ [122](#page-15-9)]. In a study on multiple sclerosis patients, rectal insufflation with O_3 increased Nrf2 phosphorylation in mononuclear cells, improved the activity of antioxidant enzymes and reduced proinflammatory cytokines [\[109\]](#page-15-0).

Nrf2 is defined as an important modulator of cytoprotective protein driven by the antioxidant response element, and Nrf2 pathway activation significantly prevents the oxidative stress determined by injuring cells and tissues [\[122\]](#page-15-10). Increasing the transcription of antioxidant enzymes (e.g. biliverdin reductase, heme oxygenase-1, peroxiredoxin 1, peroxiredoxin 6, glutathione peroxidase 2, glutathione peroxidase 4, and glutathione reductase, thioredoxin-1, etc.) is the mechanism by which Nrf2 prevents the oxidative

stress [123-126]. A study on biopsy specimens of COVID-19 patients found that the gene expression pathway of Nrf2 was suppressed [[127](#page-16-0)].

Homeostatic control of ROS, accomplished by Nrf-2, can break the vicious circle of ROS and inflammation. In addition, Nrf2 reduces the generation of pro-inflammatory cytokines such as IL1β and IL-6 through prevention of RNA polymerase II transcriptional activity, which further suppresses the inflammatory response [[128](#page-16-1)]. Furthermore, Nrf2 regulates gene expression in activated macrophages through two-way interactions with Nuclear Factor kappa-light-chain-enhancer of activated B cells (NFkB) transcription factor. Nrf2 performs regulated self-transcription [129], and decreases NF-kB transcriptional activity [[130](#page-16-2)].

NF- kB activation increases the generation of pro-inflammatory cytokines such as IL8, TNFα, IL6, IL1β, IFNγ, as well as proinflammatory enzymes like inducible Nitric Oxide Synthase and cyclooxygenase-2 [[131](#page-16-3)]. In an animal model of ALI caused by SARS-CoV-1 infection, the generation of oxidized low-density lipoprotein (OxLDL) enhanced the innate human immune activity through Tolllike receptor 4 (TLR4)/NF-kB signalling pathway and subsequent excessive production of IL-6 by alveolar macrophages [\[132\]](#page-16-4). The fact that antioxidants such as vitamin E, green tea polyphenols, Lcysteine, thiols and N-acetylcysteine (NAC) can block the activating effects of almost all stimuli on NF-κB further confirms the possible role that ROS play in NF-κB activation [133, [134\]](#page-16-5).

Ozone therapy decreases the level of NLRP3 inflammasome either directly or via Nrf2 activation/ROS reduction/NF-kB inhibition pathway [112]. Decreasing levels of ROS or inhibition of NF-κB prevent components of the NLRP3 inflammasome protein from being assembled, thus subsequently reducing its activity [[135-138](#page-16-6)].

3.7. Ozone therapy and COVID-19

A mixture of oxygen-ozone (O_2-O_3) infusion therapy has proven beneficial for COVID-19 patients admitted to forced non-invasive ventilation, contributing to restore their O_2 saturation in a relatively short time [139]. To date, a few investigations have assessed the effects of ozone therapy in patients suffering from COVID-19. A study on 50 ICU patients with ARDS caused by COVID-19 reported clinical improvement sustained by increased O_2 saturation and PaO2/FiO2 ratio following systemic ozone therapy [[139](#page-16-7)]. In addition, thromboembolic and inflammatory markers such as D-dimer, IL-6, CRP were significantly reduced in these patients. Similar findings were reported in other clinical studies [[137](#page-16-8)-146]. Although O_2-O_3 autohemotherapy is regarded very safe - having a complication rate as low as 0.7/100,000 – and cost-effective, it needs to be delivered using proper devices and adapted to different phenotypes of COVID-19 patients [139,147,148].

The Italian Society of Ozone and Oxygen therapy (SIOOT) recently issued a clinical protocol, approved by the Italian National Institute of Health (ISS, Italian acronym), for the management of COVID-19 patients by O2-O3 auto-hemotherapy. The latter protocol stratifies COVID-19 patients into 5 phenotype classes, each corresponding to a different therapeutic approach, with phenotypes 1, 2, 3 (early stages COVID-19 infection) being more responsive to O2-O3 therapy (**Table 3**). Homogenous O2-O3 mixtures need to be produced with a precise and easily adjustable concentration, using devices made of ozone-resistant materials. O2 saturation of COVID-19 patients treated by O2-O3 therapy needs to be monitored on a daily basis, whereas laboratory tests (CRP, fasting glucose, ALT, creatinine, leukocytes, LDH, pro-calcitonin, L-6, among others) can be weekly checked [139,149].

The mechanisms of O2-O3 therapy against COVID-19 is still unknown, but the activation of Nrf2 induced by ozone appears to suppress the production of pro-inflammatory cytokines, hence modulating the hyper-coagulate state associated with severe forms of COVID-19 [128,139]. Furthermore, O2-O3

seems capable to directly inactivate coronaviruses spike envelope proteins - abundant of cysteine and tryptophan amino acids - thereby interfering with the binding of SARS-CoV-2 with ACE2 receptor [150]. The binding of SARS-CoV-2 with the ACE2 receptor may also be prevented by the inhibition of the palmytoilation of the spike envelope mediated by nitric oxide signalling pathways, also enhanced by O2-O3 [151,152].

4. CONCLUSIONS

Ozone therapy could be a potential resource to modulate the patient immune response against SARS-CoV-2, contributing to contain the cellular oxidative stress of COVID-19 pneumonia and breaking the vicious cycle of cytokine storm observed in severe forms of the disease. Ozone therapy may also be a useful complementary treatment to be considered in patients suffering from early stage COVID-19 pneumonia, to prevent the progression to life-threatening disease.

Conflict of interest. None

Funding. None.

References

- 1. Sharma A, Tiwari S, Deb MK, Marty JL. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int J Antimicrob Agents. 2020;56(2):106054.
- 2. Chauhan S. Comprehensive review of coronavirus disease 2019 (COVID-19). Biomed J. 2020;43(4):334-340.
- 3. Acter T, Uddin N, Das J, Akhter A, Choudhury TR, Kim S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci Total Environ. 2020;730:138996. doi:10.1016/j.scitotenv.2020.138996
- 4. Zhong NS, Zheng BJ, Li YM, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China. Lancet. 2003;362(9393):1353- 1358.
- 5. Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003 ;348(20):1967-76
- 6. Pavli A, Tsiodras S, Maltezou HC. Middle East respiratory syndrome coronavirus (MERS-CoV): prevention in travelers. Travel Med Infect Dis. 2014;12(6 Pt A):602-8.
- 7. Ren L-L, Wang Y-M, Wu Z-Q, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020;133(9):1015-1024.
- 8. Yanes-Lane M, Winters N, Fregonese F, Bastos M, Perlman-Arrow S, Campbell JR, Menzies D. Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: A systematic review and meta-analysis. PLoS One. 2020 ;15(11):e0241536.
- 9. Cegolon L, Pichierri J, Mastrangelo G, Cinquetti S, Sotgiu G, Bellizzi S, Pichierri G. Hypothesis to explain the severe form of COVID-19 in Northern Italy. BMJ Glob Health. 2020;5(6):e002564.
- 10. Cegolon L, Javanbakht M, Mastrangelo G. Nasal disinfection for the prevention and control of COVID-19: A scoping review on potential chemo-preventive agents. Int J Hyg Environ Health. 2020 ;230:113605.
- 11. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 ;323(13):1239-1242
- 12. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052-2059.
- 13. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). Available from: https://www.who.int/health-topics/middle-east-respiratory-syndromecoronavirus-mers#tab=tab_1 (last accessed on 18th November 2020)
- 14. Cegolon L. Investigating hypothiocyanite against SARS-CoV-2. Int J Hyg Environ Health. 2020 Jun;227:113520.
- 15. Kim PS, Read SW, Fauci AS. Therapy for Early COVID-19: A Critical Need. JAMA. 2020 Nov 11. doi: 10.1001/jama.2020.22813. Epub ahead of print.
- 16. Gavazza A, Marchegiani A, Rossi G, Franzini M, Spaterna A, Mangiaterra S, Cerquetella M. Ozone Therapy as a Possible Option in COVID-19 Management. *Front Public Health*. *2020*; 8: 417
- 17. Hudson JB, Sharma M, Vimalanathan S. Development of a practical method for using ozone gas as a virus decontaminating agent. Ozone: Sci Eng 2009;31:216-23.
- 18. Tseng C, Li C. Inactivation of surface viruses by gaseous ozone. J Environ Health 2008;70:56- 63.
- 19. Li CS, Wang YC. Surface germicidal effects of ozone for microorganisms. AIHA J 2003;64:533-7
- 20. Zhou M. Ozone: a powerful weapon to combat COVID-19 out-break. 2020. http://www.china.org.cn/opinion/2020-02/26/con-tent_75747237_4.htm (last accessed on 20th November 2020).
- 21. Rowen RJ, Robins H. A plausible "penny" costing effective treatment for corona virus ozone therapy. J Infect Dis Epidemiol. 2020; 6:113.
- 22. Hernández A, Papadakos PJ, Torres A, González DA, Vives M, Ferrando C, Baeza J. Two known therapies could be useful as adjuvant therapy in critical patients infected by COVID-19. Rev Esp Anestesiol Reanim. 2020;67(5):245-252.
- 23. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox Biology of Respiratory Viral Infections. Viruses. 2018 Jul 26;10(8):392.
- 24. Van den Brand JM, Haagmans BL, van Riel D, Osterhaus AD, Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol. 2014;151(1):83-112.
- 25. Mantzarlis K, Tsolaki V, Zakynthinos E. Role of Oxidative Stress and Mitochondrial Dysfunction in Sepsis and Potential Therapies. Oxid Med Cell Longev. 2017;2017:5985209.
- 26. Fink MP. Bench-to-bedside review: Cytopathic hypoxia. Crit Care. 2002;6(6):491-9.
- 27. Takeda K, Shimada Y, Amano M, Sakai T, Okada T, Yoshiya I. Plasma lipid peroxides and alpha-tocopherol in critically ill patients. Crit Care Med. 1984;12(11):957-9.
- 28. Ademowo OS, Dias HKI, Burton DGA, Griffiths HR. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process?. Biogerontol. 2017 ;18(6):859-879.
- 29. Hecker L. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am J Physiol Lung Cell Mol Physiol. 2018 ;314(4):L642- L653.
- 30. Yan X, Fu X, Jia Y, et al. Nrf2/Keap1/ARE signaling mediated an antioxidative protection of human placental mesenchymal stem cells of fetal origin in alveolar epithelial cells. Oxid Med Cell Longev. 2019 ;2019:2654910.
- 31. Tamura DY, Moore EE, Partrick DA, Johnson JL, Offner PJ, Silliman CCJS. Acute hypoxemia in humans enhances the neutrophil inflammatory response. Shock. 2002 ;17(4):269-73
- 32. Sarma JV, Ward PA. Oxidants and redox signaling in acute lung injury. Compr Physiol. 2011 ;1(3):1365-81.
- 33. Chen L, Liu H, Liu W, et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Chinese J Tuberculosis Respirat Dis 2020; 43:E005.DOI: 10.3760/cma.j.issn.1001-0939.2020.0005
- 34. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nat 2005;436(7047): 112-116
- 35. Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nat 2020;**579**;270–273
- 36. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM.Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;*383*(Pt *1):45-51*
- 37. Danilczyk U, Eriksson U, Crackower MA, Penninger JM. A story of two ACEs. J Mol Med 2003;81(4): 227-234
- 38. Lely A, Hamming I, van Goor H, Navis GJ. Renal ACE2 expression in human kidney disease. J Pathol. 2004;*204*(*5):*587-93
- 39. De Farias Lelis D, de Freitas DF, Machado AS, Crespo TS, Santos SHS. Angiotensin-(1-7), Adipokines and Inflammation. Metabolism: Clin Experimental. 2019 ;95:36-45
- 40. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223): 497-506
- 41. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 ;*8*(*4):420-422*
- 42. Nehme A, Zouein FA, Deris Zayeri Z, Zibara KJJocd, disease (2019) An update on the tissue renin angiotensin system and its role in physiology and pathology. J Cardiovasc Dev Dis. 2019;*6*(*2):14*.
- 43. Rajagopalan S, Kurz S, Münzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996;*97*(*8*):*1916-1923*.
- 44. Liu Y, Yang Y, Zhang C, et al. (2020) Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;*63*(*3):364-374*
- 45. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005;*11*(*8):*875-9
- 46. Wösten-van Asperen RM, Lutter R, Specht PA, et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin- $(1-7)$ or an angiotensin II receptor antagonist. J Pathol 2011;225(4): 618-627
- 47. Huang KJ, Su IJ, Theron M, et al. An interferon‐γ‐related cytokine storm in SARS patients. J Med Virol. 2005; *75*(*2): 185–194*.
- 48. Jiang Y, Xu J, Zhou C, et al. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med. 2005;*171*(*8):*850-7
- 49. Triantafilou K, Triantafilou M.Ion flux in the lung: virus-induced inflammasome activation. Trends Microbiol. 2014;*22*(*10):580-588*.
- 50. Martínez-Sánchez G, Schwartz A, Donna V. Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. *Antioxidants* 2020;*9*:389.
- 51. Martinon F.Detection of immune danger signals by NALP3. J Leukoc Biol. 2008;83(3):507- 11.
- 52. Shi C-S, Nabar NR, Huang N-N, Kehrl JH. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discovery 2019;5(1): 1-12
- 53. Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect, 2020:9(1):558-570,
- 54. Toldo S, Bussani R, Nuzzi V, et al. Inflammasome formation in the lungs of patients with fatal COVID-19. Inflamm Res. 2020 Oct 20;1-4. doi: 10.1007/s00011-020-01413-2. Online ahead of print
- 55. Parsons PE, Eisner MD, Thompson BT, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005;33(1):1-6
- 56. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest, 2020;130(5): 2202-2205
- 57. Ye Q, Wang B, Mao J.The pathogenesis and treatment of theCytokine Storm'in COVID-19. J Infect. 2020;80(6):607-613.
- 58. Bogdan C, Röllinghoff M, Diefenbach A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol. 2000;12(1):64-76
- 59. Joseph J, Ametepe ES, Haribabu N, et al. Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium. Nat Commun 2016;7(1): 1-14
- 60. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Ann Rev Immunol 2009 ;27:229-265.
- 61. Mason RJ.Pathogenesis of COVID-19 from a cell biology perspective. In. Eur Respiratory Soc. 2020 ;55(4). DOI: 10.1183/13993003.00607-2020.
- 62. Sun R, Liu H, Wang XJKJoR (2020) Mediastinal emphysema, giant bulla, and pneumothorax developed during the course of COVID-19 pneumonia. Korean J Radiol, 2020;21(5):541-544.
- 63. Wu C, Chen X, Cai Y, et al. (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Internal Med. 2020;180(7). https://doi.org/10.1001/jamainternmed.2020.0994
- 64. Gil del Valle L, Gravier Hernández R, Delgado Roche L, León Fernández OS. Oxidative stress in the aging process: fundamental aspects and new insights. In: Oxidative Stress: Diagnostics, Prevention, and Therapy Volume 2. ACS Publications, 2015;pp 177-219
- 65. Davies KJ.The oxygen paradox, oxidative stress, and ageing. Arch Biochem Biophys. 2016;595:28-32
- 66. Abouhashem AS, Singh K, Azzazy HM, Sen CKJA, Signaling R.Is Low Alveolar Type II Cell SOD3 in the Lungs of Elderly Linked to the Observed Severity of COVID-19?. Antioxid Redox Signal. 2020;33(2):59-65
- 67. Muhammad S, Bierhaus A, Schwaninger M. Reactive oxygen species in diabetes-induced vascular damage, stroke, and Alzheimer's disease. J Alzheimers Dis. 2009;16(4):775-85
- 68. Droge W.Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47-95.
- 69. Kirkham PA, Barnes PJ.Oxidative stress in COPD. Chest. 2013 ;144(1): 266-273
- 70. Atabek ME, Vatansev H, Erkul I.Oxidative stress in childhood obesity. J Pediatr Endocrinol Metab 2004; 17: 1063–1068
- 71. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752-61
- 72. Lau AT, Wang Y, Chiu JF.Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem. 2008;104(2):657-67
- 73. Renschler MF.The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer. 2004;40(13):1934-40.
- 74. Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci. 2009;66(23):3663-73
- 75. Papadopulos-Eleopulos E. Reappraisal of AIDS—is the oxidation induced by the risk factors the primary cause?. Med Hypotheses 1988;25:151-162
- 76. Touyz RM. Reactive oxygen species and angiotensin II signaling in vascular cells: implications in cardiovascular disease. Braz J Med Biol Res. 2004;37(8):1263-73
- 77. Yoshizumi M, Tsuchiya K, Tamaki T.Signal transduction of reactive oxygen species and mitogen-activated protein kinases in cardiovascular. J Med Inves 2001;48(1-2):11-24.
- 78. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054- 1062
- 79. Jordan RE, Adab P, Cheng K. Covid-19: risk factors for severe disease and death. BMJ 2020; 368 doi: https://doi.org/10.1136/bmj.m1198
- 80. Lighter J, Phillips M, Hochman S, et al. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clin Infect Dis, 2020;71 (15): 896-897
- 81. Violi F, Oliva A, Cangemi R, et al. Nox2 activation in Covid-19. Redox Biol.2020;36: 101655
- 82. Lin C-W, Lin K-H, Hsieh T-H, Shiu S-Y, Li J-YJFI, Microbiology M.Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol Med Microbiol. 2006;46(3): 375-380
- 83. Ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020 Aug;10(4):313- 319.
- 84. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E.The antioxidant properties of serum albumin. FEBS Lett. 2008;582(13): 1783-1787
- 85. Violi F, Ceccarelli G, Cangemi R, et al. Hypoalbuminemia, Coagulopathy and Vascular Disease in Covid-19. Circ Res. 2020;127(3):400-401
- 86. Hazucha MJ, Bates DV, Bromberg PA. Mechanism of action of ozone on the human lung. J Appl Physiol 1989 ;67(4):1535-41
- 87. Bocci V, Borrelli E, Travagli V, Zanardi I.The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev 2009;29(4): 646-682.
- 88. Bocci V, Zanardi I, Huijberts MS, Travagli V.Diabetes and chronic oxidative stress. A perspective based on the possible usefulness of ozone therapy. Diabetes Metab Syndr 2011;5(1): 45-49.
- 89. Bocci V.Is it true that ozone is always toxic? The end of a dogma. Toxicol Appl Pharmacol. 2006;216(3):493-504
- 90. Bocci V.The case for oxygen-ozonetherapy. Br J Biomed Sci 2007;64(1): 44-49
- 91. Laubach VE, Sharma AK. Mechanisms of lung ischemia-reperfusion injury. Curr Opin Organ Transplant. 2016; 21(3): 246–252
- 92. Ferrari RS, Andrade CF. Oxidative stress and lung ischemia-reperfusion injury. Oxid Med Cell Longev. 2015;2015:590987.
- 93. Ajamieh H, Menéndez S, Martínez‐Sánchez G, et al. Effects of ozone oxidative preconditioning on nitric oxide generation and cellular redox balance in a rat model of hepatic ischaemia– reperfusion. Liver Int. 2004;24(1):55-62.
- 94. Peralta C, Leon O, Xaus C, et al. Protective effect of ozone treatment on the injury associated with hepatic ischemia-reperfusion: antioxidant-prooxidant balance. Free Radic Res. 1999;31(3):191-6
- 95. González R, Borrego A, Zamora Z, et al. Reversion by ozone treatment of acute nephrotoxicity induced by cisplatin in rats. Mediators Inflamm 2004; 13(5-6): 307–312
- 96. Kurtoglu T, Durmaz S, Akgullu C, et al. Ozone preconditioning attenuates contrast-induced nephropathy in rats. J Surg Res, 2015;195(2):604-611,
- 97. Onal O, Yetisir F, Sarer A, et al. Prophylactic ozone administration reduces intestinal mucosa injury induced by intestinal ischemia-reperfusion in the rat. Mediators Inflamm. 2015;2015:792016.
- 98. Nasezadeh P, Shahi F, Fridoni M, Seydi E, Izadi M, Salimi AJFRR (2017) Moderate O3/O2 therapy enhances enzymatic and non-enzymatic antioxidant in brain and cochlear that protects noise-induced hearing loss. Free Radic Res 2017; 51(9-10): 828-837
- 99. Kal A, Kal O, Akillioglu I, et al. The protective effect of prophylactic ozone administration against retinal ischemia-reperfusion injury. Cutan Ocul Toxicol. 2017 ;36(1):39-47
- 100. Naserzadeh P, Jamali Z, Choobineh H, Izadi M, Salimi A.Induced Mild Oxidative Stress by Ozone/Oxygen Therapy Enhances Therapy Antioxidant Capacities and Protects Testicular Ischemia/Reperfusion Injury in Rats. Res Square.Preprint. Posted 15 Sep, 2019. DOI: 10.21203/rs.2.14446/v1
- 101. Re L, Martínez-Sánchez G, Bordicchia M, et al. Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. Eur J Pharmacol. 2014;742:158-62
- 102. Inal M, Dokumacioglu A, Özcelik E, Ucar O. The effects of ozone therapy and coenzyme Q 10 combination on oxidative stress markers in healthy subjects. Ir J Med Sci. 2011;180(3):703-7
- 103. Loprete F, Vaiano F, Valdenassi L. Outpatient evaluation of oxidative stress in subjects undergoing systemic oxygen-ozone therapy. Ozone Therapy, 4(1). https://doi.org/10.4081/ozone.2019.8175
- 104. Fernández OSL, Viebahn-Haensler R, Cabreja GL, Espinosa IS, Matos YH, Roche LD, Santos BT, Oru GT, Polo Vega JC. Medical ozone increases methotrexate clinical response and improves cellular redox balance in patients with rheumatoid arthritis. Eur J Pharmacol. 2016;789:313-318.
- 105. Emma B.Treatment of advanced non-small-cell lung cancer with oxygen ozone therapy and mistletoe: an integrative approach. EurJIntegrative Med 2012;(4): 130
- 106. Martínez-Sánchez G, Delgado-Roche L, Díaz-Batista A, Pérez-Davison G, Re L. Effects of ozone therapy on haemostatic and oxidative stress index in coronary artery disease. Eur J Pharmacol. 2012 ;691(1-3):156-62.
- 107. Hernández F, Menéndez S, Wong R. Decrease of blood cholesterol and stimulation of antioxidative response in cardiopathy patients treated with endovenous ozone therapy. Free Radic Biol Med. 1995;19(1):115-9.
- 108. Buyuklu M, Kandemir FM, Set T, et al. Beneficial effects of ozone therapy on oxidative stress, cardiac functions and clinical findings in patients with heart failure reduced ejection fraction. Cardiovasc Toxicol. 2017;17(4):426-433.
- 109. Delgado-Roche L, Riera-Romo M, Mesta F, et al. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur J Pharmacol 2017;811: 148-154.
- 110. Shah MA, Anande LK, Powar A, Captain J, Mk Nair PJMEJoR, Studies H. The Role of Medical Ozone in Improving Antioxidant Status in Multiple Drug-Resistant Tuberculosis Patients: A Quasi-experimental Study. Middle East J Rehabil Health Stud. 2019; 6(4):e97125.
- 111. Shah MA. Ozone Therapy in oxidative stress disorders and evaluation of C- reactive proteins [abstract]. Proceedings of the 5Th WFOT Meeting; 2016 Nov 18-20; Mumbai, India. J Ozone Ther. 2018;2(2). doi: 10.7203/jo3t.2.2.2018.11148
- 112. Martinez-Sanchez G, Al-Dalain SM, Menendez S, et al. Therapeutic efficacy of ozone in patients with diabetic foot. Eur J Pharmacol 2005;523(1-3): 151-161.
- 113. Fernandez OSL, Oru GT, Vega JCP, et al. Ozone+ Arthroscopy: Improved Redox Status, Function and Surgical Outcome in Knee Osteoarthritis Patients. Int J Innov Surg. 2020; 3(1): 1011.
- 114. Totolici IP, Pascu AM, Poroch V, Mosoiu D. The impact of ozone therapy on antioxidant status and quality of life in palliative care-exploratory study. Revista de Chimie 2017; 68(10): 2416-2421
- 115. Pecorelli A, Bocci V, Acquaviva A, et al. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol Appl Pharmacol. 2013;267(1):30-40.
- 116. Galiè M, Costanzo M, Nodari A, et al. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med. 2018;124:114-121
- 117. Natural Holistic Health Care Ozone And UNB Therapy. Available from https://www.naturalholistic.com/ozone-and-unb-therapy. Accessed 21 July 2020
- 118. Bocci VA, Zanardi I, Travagli V. Ozone acting on human blood yields a hormetic doseresponse relationship. J Transl Med. 2011;9:66.
- 119. Wang Z, Zhang A, Meng W, Wang T, Li D, Liu Z, Liu H. Ozone protects the rat lung from ischemia-reperfusion injury by attenuating NLRP3-mediated inflammation, enhancing Nrf2 antioxidant activity and inhibiting apoptosis. Eur J Pharmacol. 2018;835:82-93
- 120. Sagai M, Bocci V. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress? Med Gas Res. 2011;1:29.
- 121. Bocci V. How a calculated oxidative stress can yield multiple therapeutic effects. Free Radic Res. 2012;46(9):1068-75.
- 122. Bocci V, Valacchi G. Nrf2 activation as target to implement therapeutic treatments. Front Chem. 2015;3:4.
- 123. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39(4):199-218.
- 124. Tanito M, Agbaga MP, Anderson RE. Upregulation of thioredoxin system via Nrf2 antioxidant responsive element pathway in adaptive-retinal neuroprotection in vivo and in vitro. Free Radic Biol Med. 2007;42(12):1838-50.
- 125. MacLeod AK, McMahon M, Plummer SM, Higgins LG, Penning TM, Igarashi K, Hayes JD. Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 pathway, and not the BACH1- NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis. 2009;30(9):1571-80.
- 126. Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey A, Kensler TW. Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphanetreated human breast epithelial cells reveals common expression profiles. Breast Cancer Res Treat. 2012;132(1):175-87
- 127. Olagnier D, Farahani E, Thyrsted J, et al. SARS-CoV2-mediated suppression of NRF2 signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun 2020;11(1): 1-12
- 128. Kobayashi EH, Suzuki T, Funayama R, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 2016;7(1): 1-14
- 129. Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood. 2012;120(26):5188-98.
- 130. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, Biswal S. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest. 2006;116(4):984-95.
- 131. Ahmed SM, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017;1863(2):585-597.
- 132. Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235-49.
- 133. Nomura M, Ma W, Chen N, Bode AM, Dong Z. Inhibition of 12-Otetradecanoylphorbol-13-acetate-induced NF-kappaB activation by tea polyphenols, (-) epigallocatechin gallate and theaflavins. Carcinogenesis. 2000;21(10):1885-90.
- 134. Schulze-Osthoff K, Bauer MK, Vogt M, Wesselborg S. Oxidative stress and signal transduction. Int J Vitam Nutr Res. 1997;67(5):336-42.
- 135. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677-87.
- 136. Minutoli L, Antonuccio P, Irrera N, et al. NLRP3 inflammasome involvement in the organ damage and impaired spermatogenesis induced by testicular ischemia and reperfusion in mice. . J Pharmacol Exp Ther. 2015;355(3):370-80
- 137. Yin N, Peng Z, Li B, Xia J, Wang Z, Yuan J, Fang L, Lu X. Isoflurane attenuates lipopolysaccharide-induced acute lung injury by inhibiting ROS-mediated NLRP3 inflammasome activation. Am J Transl Res. 2016;8(5):2033-46.
- 138. Dong W, Yang R, Yang J, Yang J, Ding J, Wu H, Zhang J. Resveratrol pretreatment protects rat hearts from ischemia/reperfusion injury partly via a NALP3 inflammasome pathway. Int J Clin Exp Pathol. 2015;8(8):8731-41.
- 139. Franzini M, Valdenassi L, Ricevuti G, Chirumbolo S, Depfenhart M, Bertossi D, Tirelli U. Oxygen-ozone (O2-O3) immunoceutical therapy for patients with COVID-19. Preliminary evidence reported. Int Immunopharmacol. 2020;88:106879.
- 140. Hernandez A, Vinals M, Pablos A, et al. Ozone therapy for patients with SARS-COV-2 pneumonia: a single-center prospective cohort study.2020. Preprint,medRxiv , doi: https://doi.org/10.1101/2020.06.03.20117994
- 141. Fernández-Cuadros ME, Albaladejo-Florín MJ, Álava-Rabasa S, et al. Effect of Rectal Ozone (O 3) in Severe COVID-19 Pneumonia: Preliminary Results. SN Comprehensive Clin Med 2020; 2(9): 1328-1336
- 142. Hernández A, Viñals M, Isidoro T, Vilás F. Potential Role of Oxygen-Ozone Therapy in Treatment of COVID-19 Pneumonia. Am J Case Rep. 2020;21:e925849.
- 143. Zheng Z, Dong M, Hu K. A preliminary evaluation on the efficacy of ozone therapy in the treatment of COVID-19. J Med Virol. 2020 May 21:10.1002/jmv.26040. doi: 10.1002/jmv.26040. Epub ahead of print.
- 144. Wu J, Tan C, Yu H, et al. Case Report: Recovery of One Icu-Acquired Covid-19 Patient Via Ozonated Autohemotherapy. SSRN Electronic Journal, 2020. DOI:10.2139/ssrn.3561379.Corpus ID: 218842341
- 145. Wu J, Tan CS, Yu H, et al. Recovery of Four COVID-19 Patients via Ozonated Autohemotherapy. Innovation (N Y). 2020 ;1(3):100060.
- 146. Tascini C, Sermann G, Pagotto A, et al. Blood ozonization in patients with mild to moderate COVID-19 pneumonia: a single centre experience. Intern Emerg Med. 2020 Nov 1:1– 7. doi: 10.1007/s11739-020-02542-6. Epub ahead of print.
- 147. Valdenassi L, Franzini M, Ricevuti G, Rinaldi L, Galoforo AC, Tirelli U. Potential mechanisms by which the oxygen-ozone (O2–O3) therapy could contribute to the treatment against the coronavirus COVID-19, Eur Rev Med Pharmacol Sci. 2020; 24 (8): 4059–4061.
- 148. Simonetti V, Quagliariello V, Franzini M, Iaffaioli RV, Maurea N, Valdenassi L. Ozone Exerts Cytoprotective and Anti-Inflammatory Effects in Cardiomyocytes and Skin Fibroblasts after Incubation with Doxorubicin. Evid Based Complement Alternat Med. 2019 ;2019:2169103.
- 149. Italian Society of Oxygen Ozone Therapy (SIOOT). A different therapeutic protocol for each of the five different phenotypes. Available from: (last accessed on 30th November 2020).
- 150. Zhang JM, Penninger Y, Li N, Zhong AS, Slutsky. Angiotensin-converting en- zyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target, Intensive Care Med. 2020;46 (4):586–590.
- 151. Akerström S, Gunalan V, Keng CT, Tan YJ, Mirazimi A, Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the Sprotein are affected, Virology 2009;395 (1): 1–9.
- 152. Robba C, Robba C, Battaglini D, Ball L, Patroniti LN, Loconte M, Brunetti I, Vena A, Giacobbe D, Bassetti M, Rocco PRM, Pelosi P. Distinct phenotypes require distinct respiratory management strategies in severe COVID-19. Respir Physiol Neurobiol. 2020;279:103455

Figure 1. Possible mechanisms by which ozone therapy can reduce oxidative stress and disease severity in COVID-19 patients. Green lines denote activating effects and red lines denote inhibiting effects. NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; Nrf2, Nuclear factor erythroid 2-related factor 2; RAAS, Renin Angiotensin Aldosterone System

Table 1. Experimental animal studies on antioxidative effects of ozone therapy; CAT= catalase; GSH= glutathione; GSH-Px=glutathione peroxidase; IRI= Ischemia-Reperfusion Injury; SOD= superoxide dismutase; TAC= Total Antioxidant Capacity.

Table 2. Experimental Human clinical studies on the antioxidative effects of Ozone therapy. AOPP= advanced oxidation protein products; BAP= biological antioxidant potential; CAT= catalase; CRP,C-reactive protein; FRAP= ferric reducing ability of plasma; **FiO2=Fraction of inspired oxygen;** G6PD= glucose 6 phosphate dehydrogenase; GGT= glutamyl transferase; GSH=glutathione; GSH-Px=glutathione peroxide; MDR-TB= multidrug resistance tuberculosis; MDA= malondialdehyde; NO= nitric oxide; *PaO2=***Partial pressure of oxygen;** PP= peroxidation potential; ROM= reactive oxygen metabolites; SOD= superoxide dismutase; TH=total hydroperoxides.

MAHT: Major Auto-Hemo Therapy

CPAP: Continuous Positive Airway Pressure

Graphical Abstract: A scheme revealing angiotensin-converting enzyme 2 (ACE2) receptormediated COVID-19 following SARS-CoV-2 infection together with the mechanism of Ozone (O3)

Highlight

COVID-19 activates RAAS which induces oxidative stress leading to cytokine storm.

Ozone therapy can reduce oxidative stress.

Ozone therapy might be an excellent option as a complementary treatment for COVID-19.