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Review Article
Ozone therapy for the treatment of COVID-19 pneumonia: a scoping review.
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ABSTRACT

Severe forms of COVID-19 can evolve into pneumonia, featured by acute respiratory failure due to 
acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In viral diseases, the 
replication of viruses is seemingly stimulated by an imbalance between pro-oxidant and antioxidant 
activity as well as by the deprivation of antioxidant mechanisms. In COVID-19 pneumonia, oxidative 
stress also appears to be highly detrimental to lung tissues. Although, inhaling ozone (O3) gas has been 
shown to be toxic to the lungs, recent evidence suggests that its administration via appropriate routes 
and at small doses can paradoxically induce an adaptive reaction capable of decreasing the endogenous 
oxidative stress. Ozone therapy is recommended to counter the disruptive effects of severe COVID-19 
on lung tissues, especially if administered in early stages of the disease, thereby preventing the 
progression to ARDS.

Keywords: COVID-19, pneumonia, ARDS, ALI, oxidative stress, ozone (O3) the
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1.INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), coronavirus disease 2019 
(Covid-19), rapidly spread worldwide to become a pandemic on March 11, 2020 [1-3].
Seven coronavirus strains discovered thus far can cause infectious disease in humans. Whilst strains 
229E, HKU1, OC43 and NL63 cause mild respiratory diseases, often presenting with common cold 
symptoms, the other three types can determine severe infectious diseases and include:

 The Severe Acute Respiratory Syndrome Coronavirus type 1 (SARS-CoV-1), which was 
associated with an outbreak in Hong Kong and elsewhere during 2002-2003 [4, 5];

 The Middle East Respiratory Syndrome Coronavirus (MERS-CoV), first appeared in 2012 and 
is still circulating among certain animals such as camels, mainly in the Middle-East [6];  and 

 SARS-CoV-2. 
There are high similarities between the latter three human coronaviruses, with SARS-CoV-2 sharing 
51.8% and 79% nucleotide homology with MERS-CoV and SARS-CoV-1 [7].
The clinical pattern of COVID-19 varies extensively from mild/moderate (81%) to severe (14%) or 
critical (5%) [9, 10, 11 ]. Among 2,634 hospitalized patients with confirmed COVID-19 in New York 
City, Long Island and Westchester County from March 1 to April 4, 2020, 14.2% needed admission to 
intensive care units (ICUs),  with invasive mechanical ventilation required in 12.2% of them [12]. 
Despite a mortality rate of approximately 2.3% - considerably lower than MERS-CoV (35%) - the base 
reproductive number (Ro) of SARS-CoV- 2 has been estimated to fall between 2 and 3, similar to 
SARS-CoV-1 (Ro=1.95) but much higher than MERS-CoV (Ro=0.5). SARS-CoV-2 is therefore more 
contagious as compared with MERS-CoV [12 [13,14], especially since asymptomatic/pre-symptomatic 
COVID-19 patients can shed high loads of virus in the surrounding environment [10]. In a recent meta-
analysis on 28 high/moderate quality studies including cohorts or studies testing individuals irrespective 
of their COVID-19 symptoms, or case series with tracking report of asymptomatic patients, 8.7% study 
subjects were found to be COVID-19 positive. The percentage of asymptomatic in the latter metanalysis 
was 20% to 75% among COVID-19 confirmed cases [8].

In a viewpoint just published in JAMA, Kim et al., urgently called for new outpatients’ therapies which, 
combined with an effective vaccine, could significantly contribute to end this ongoing COVID-19 
pandemic [15]. Whilst some drugs (especially corticosteroids) are currently used against severe 
COVID-19, therapeutic remedies for initial/moderate COVID-19 pneumonia are still missing. 
Treatments effective in early stage COVID-19 pneumonia could have a significantly impact on patients’ 
prognosis, reduction of hospital admissions, prevention of long-term sequelae and containment of the 
communicability window of COVID-19, hence reducing the respective risk of infection [15]. Leading 
candidates for COVID-19 treatment examined by Kim et al., included emerging antivirals, 
immunomodulatory drugs and antibody-based immunotherapy, with ozone (O3) being neglected [15]. 

Ozone is a triatomic unstable gas composed of 3 oxygen (O2) molecules featured by a 1h half time, 
rapidly reverting to O2 at ambient temperature [16]. Ozone has potent oxidizing activity and already 
proved effective cidal effect against bacteria, fungi and viruses [17-19], including SARS-CoV-1 [20], 
through oxidation of double bonds [16].
For its immunomodulatory and anti-inflammatory properties Ozone has also recently been suggested 
as potential, inexpensive and easily available adjuvant therapy also against CODVI-19, especially in 
mild to moderate pneumonia, to prevent the progression to critical disease [21,22].
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In this study we conducted a scoping review of the evidence on the potential application of ozone (O3) 
to treat/prevent the severe forms of COVID-19.

2. METHODS

Searching strategy

PubMed, Scopus, Google Scholar, Web of Science and Cochrane library were searched using the 
following keywords: “COVID-19 Infection AND oxidative stress”; “SARS-CoV-2 AND oxidative 
stress”; “Infectious disease AND oxidative stress”; “Inflammation AND oxidative stress”; “Viral 
disease AND oxidative stress”; “Pneumonia AND oxidative stress”; “Ozone (therapy) AND Oxidative 
Stress”; “Ozone (therapy) AND pneumonia“; “Ozone (therapy) AND Viral Disease”; “Ozone (therapy) 
AND COVID-19”; “ozone therapy AND SARS-CoV-2”; “Ozone (therapy) AND Inflammation”; 
“Ozone (therapy) AND acute lung injury (ALI) “; “Ozone (therapy) and Acute Respiratory Distress 
Syndrome (ARDS) “; “Ozone (therapy) and ARDS”; “Ozone (therapy) AND Severe Acute Respiratory 
Syndrome”; “Ozone (therapy) AND SARS”; “Ozone (therapy) AND cytokines”; “Angiotensin-
Converting Enzyme-2 (ACE2) receptor AND Oxidative stress”. Retrieved items were screen by title 
and abstract. Only articles in English were considered; dissertations, conference abstracts and duplicate 
publications were discarded.

3. DISCUSSION

3.1. Viral Diseases and Oxidative Stress
In viral diseases, the replication of viruses is seemingly influenced by an imbalance between pro-
oxidant and antioxidant activity as well as by the deprivation of antioxidant mechanisms [23]. In an 
experimental animal model, SARS-CoV-1 infection was found to be linked to elevated reactive oxygen 
species (ROS) levels and disruption of antioxidant defences [24]. Hypoxia, that can be caused by viral 
sepsis, produces ROS such as superoxide radicals [25-28]. Increased oxidative stress is severely 
damaging for the lung, causing acute respiratory failure sustained by ALI and ARDS, featured by 
considerably high mortality and morbidity [29, 30]. ALI/ARDS also characterize patients affected by 
severe/critical COVID-19, especially those referred to ICUs, where multiple factors such as hypoxemia, 
inflammation and mechanical ventilation with high fractions of inhaled O2 magnify oxidant generation 
[31, 32]. Elevated High Sensitivity C-Reactive Protein (hsCRP), an indicator of inflammation and 
oxidative stress, has been found in 93% of patients affected by COVID-19 pneumonia [33].

3.2. Renin-Angiotensin-Aldosterone System (RAAS) and oxidative stress
The RAAS seems to be involved in the pathogenesis of severe ALI. SARS-CoV-1 is capable of binding 
to the Angiotensin-Converting Enzyme-2 (ACE2) through its spike protein (Fig 1), downregulating its 
expression, which would have a physiological protective effect against ALI [34]. Likewise, SARS-
CoV-2 also exploits the ACE2 receptor for cell internalization [35].
The carboxypeptidase ACE2 is a crucial element of RAAS for the control of blood pressure [36,37]. It 
seems that Angiotensin-Converting Enzyme (ACE) and ACE2 antagonize with each other [37]. 
Angiotensin I (AT1) and angiotensin II (AT2) are converted by ACE2 into the inactive molecule 
angiotensin 1–9 and angiotensin 1–7, respectively [38]. Angiotensin 1-7 has anti-proliferative and 
vasodilatory effects and reduces the oxidative stress [39]. As mentioned above, some critically ill  
patients  with COVID-19 develop ALI and ARDS, which lead to pulmonary oedema and lung failure 
[40, 41].  In the pathogenesis of ALI, ACE upregulates AT2, which in turn causes severe lung injury 
through binding with the AT2 subtype 1a receptor [34]. AT2 has potent vasoconstrictor effects and 
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induces oxidative stress [42] predominantly through activation of NADPH oxidase, one of the most 
prominent producers of superoxide radical [43].  The serum level of AT2 is reported to be considerably 
elevated in COVID-19 patients and exhibits a positive linear correlation with viral load and lung injury 
[44]. By contrast, increasing levels of ACE2 and AT2 receptors had a protective effect in vitro against 
lung injury induced by SARS-CoV-1, MERS-CoV and SARS-CoV-2 [34, 44-46]. 

3.3. Inflammation and oxidative stress
In severe forms of COVID-19 a phenomenon known as ‘cytokines storm’ can be observed [40].  The 
increased levels of cytokines such as Monocyte Chemotactic Protein 1 (MCP1), IFN-γ-inducible protein 
10, IFN-γ, IL-1β, IL-6 and IL-18, which has been found in lymphoid tissues, blood and lungs of 
COVID-19 patients, point toward an increased activity of the inflammasome [47-49]. The 
inflammasome, a protein complex of the cytosol, is one of the first components of the host innate 
immunity, involved in anti-viral responses by mediating the secretion of pro-inflammatory cytokines 
[50]. Rather than directly recognizing pathogenic elements, NLRP3 (NOD-, LRR- and pyrin domain-
containing protein 3) the inflammasome appears to detect pathogenic-induced oxidative stress [51]. 
Nonetheless, it seems that SARS-CoV-1 directly encodes some of the known activators of NLRP3 
inflammasome such as the envelope (E) protein, ORF8b, and ORF3a, which share respectively 95%, 
40%, and 72% amino acid sequence with their counterpart molecules in SARS-CoV-2 [52, 53]. 
Significantly increased levels of NLRP3 inflammasome in leukocytes of affected lung areas have 
recently been reported in fatal COVID-19 pneumonia [54].
Similar to SARS-CoV-2, an excessive release of proinflammatory cytokines has been reported for 
SARS-CoV-1 [55,56]. A number of COVID-19 patients not presenting ARDS show signs of 
extrapulmonary tissue damage (e.g. elevated creatinine and liver enzymes), possibly due to pro-
inflammatory cytokine storm [57]. 
The generation of ROS-dependent respiratory burst is one of the mechanisms used by activated 
phagocytic cells such as neutrophils to suppress microbes during inflammation processes [58]. 
However, dysregulated interactions between ROS and inflammation may be linked to the pathogenesis 
of cytokine storm caused by COVID-19 (Fig 1). While inflammation enhances ROS levels, increased 
levels of ROS in turn can boost inflammation, thereby creating a vicious circle [59]. The hyper-
inflammatory state sustained by phagocytes likely explain the diffuse alveolar lesions with potential 
emphysema and even pneumothorax observed in critical COVID-19 pneumonia. On the other hand, it 
is hypothesized that ROS is implicated in activating the NLRP3 inflammasome [60-62].

3.4. COVID-19 risk factors and Oxidative stress
The risk of ARDS and related COVID-19 mortality increases with patients’ age [63], which is 
associated with both cumulative damage caused by oxidative stress and reduced antioxidant activity 
[64, 65]. Results of a study on gene expression of type II pneumocytes revealed that the most 
downregulated gene in the elderly subjects is that encoding the superoxide dismutase 3 (SOD3). Genes 
encoding other molecules with antioxidant activity were also found to be downregulated in this 
population [66].
Oxidative stress and ROS are also key factors involved in pathological processes such as diabetes [67], 
hypertension [68], Chronic Obstructive Pulmonary Disease [69], obesity  [70,71, cancer [72-74], AIDS 
[75] and cardiovascular disease [76, 77]. Comorbidities, which increase linearly with age, in turn, 
enhances the risk of severe COVID-19 [68-80].

3.5. COVID-19 and Oxidative stress
A few investigations assessed the induction of oxidative stress due to COVID-19. A recent study 
reported increased serum levels of sNox2-dp, a NADPH oxidase activation marker in COVID-19 
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patients in comparison with healthy individuals [81]. Furthermore, higher serum levels of sNox2-dp 
have been reported among ICU patients as compared to non-ICU patients [81].
Cellular ROS were considerably increased in human promonocyte cells expressing SARS-CoV-1 
3CLpro (viral 3-chymotrypsin-like cysteine protease) [82]. There is 99.02 % homology between 
sequences of SARS-CoV-2 3CLpro and SARS-CoV-1 3CLpro[83], which further strengthens the 
argument that SARS-CoV-2 can cause oxidative stress.
Another remarkable finding is that serum albumin, which is considered a major component of serum 
antioxidant defence [84], is considerably decreased in patients suffering from  COVID-19 [85], pointing 
towards a disruption of redox balance in these patients. Therefore, oxidative stress may be implicated 
in the pathogenesis of COVID-19 pneumonia (Fig1). 

3.6. Ozone Therapy and oxidative stress
Although the inhalation of O3 gas is very toxic for the lungs [86], recent evidence on O3 biochemical 
activity has shown that its administration via appropriate routes and at small doses can paradoxically be 
involved in induction of an adaptive reaction capable of decreasing the endogenous oxidative stress 
[87-90]. There is a growing consensus that an accurately adjusted oxidative stress has therefore the 
ability to boost the antioxidant activities.
Various experimental studies assessed the antioxidative effects of ozone therapy (Table 1), mostly in 
rats with ischemia-reperfusion injury (IRI) because oxidative stress largely contributes to IRI [91,92]. 
Hepatic [93,94], renal [95,96], intestinal [97], cochlear [98], retinal [99] and testicular [100] tissues 
among others have been investigated so far. According to these studies, ozone therapy has a protective 
role against IRI by shifting the redox balance towards the antioxidant activity.
To date, the antioxidative effects of systemic ozone therapy have been studied (Table 2), both on 
healthy volunteers [101-103] and patients with different clinical conditions such as rheumatoid arthritis 
(RA) [104], advanced non-small cell lung cancer [105], coronary artery disease [106], myocardial 
infarction [107], heart failure [108], multiple sclerosis [109], multi-drug resistance TB [110], diabetes 
[111, 112], knee osteoarthritis [113], cancer patients under palliative care [114], in addition to 
endothelial [115] and HeLa cells [116]. According to these studies, ozone therapy significantly 
increases the level of FRAP (Ferric Reducing Ability of Plasma), an indicator of total antioxidant 
capacity, as well as antioxidants (e.g., superoxide dismutase, glutathione peroxidase, glutathione, 
glutathione S-transferase, etc.). Furthermore, ozone therapy determines a decrease in the levels of 
oxidative stress markers, including peroxidation potential, total hydroperoxides, malondialdehyde, 
nitric oxide (NO) and advanced oxidation protein products (AOPP).
Systemic O3 can be administered by different routes, such as major auto-hemotherapy, minor auto-
hemotherapy and rectal insufflation, among others [117]. At therapeutic doses and with appropriate 
dose intervals, O3 administration regulates multiple biochemical mechanisms mostly via the activation 
of secondary messengers [118].
O3 therapy stimulates the expression and activity of Nuclear erythroid 2-related factor 2 (Nrf2) [119]. It 
is argued that low dose ozone is capable of exerting anti-inflammatory and antioxidant activities by 
means of activating Nrf2, which contributes substantially to the effectiveness of O3-O2 treatments [120-
122]. In a study on multiple sclerosis patients, rectal insufflation with O3 increased Nrf2 
phosphorylation in mononuclear cells, improved the activity of antioxidant enzymes and reduced pro-
inflammatory cytokines [109].
Nrf2 is defined as an important modulator of cytoprotective protein driven by the antioxidant response 
element, and Nrf2 pathway activation significantly prevents the oxidative stress determined by injuring 
cells and tissues [122]. Increasing the transcription of antioxidant enzymes (e.g. biliverdin reductase, 
heme oxygenase-1, peroxiredoxin 1, peroxiredoxin 6, glutathione peroxidase 2, glutathione peroxidase 
4, and glutathione reductase, thioredoxin-1, etc.) is the mechanism by which Nrf2 prevents the oxidative 
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stress [123-126]. A study on biopsy specimens of COVID-19 patients found that the gene expression 
pathway of Nrf2 was suppressed [127].
Homeostatic control of ROS, accomplished by Nrf-2, can break the vicious circle of ROS and 
inflammation. In addition, Nrf2 reduces the generation of pro-inflammatory cytokines such as IL1β and 
IL-6 through prevention of RNA polymerase II transcriptional activity, which further suppresses the 
inflammatory response [128]. Furthermore, Nrf2 regulates gene expression in activated macrophages 
through two-way interactions with Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-
kB) transcription factor. Nrf2 performs regulated self-transcription [129], and decreases NF-kB 
transcriptional activity [130].
NF- kB activation increases the generation of pro-inflammatory cytokines such as IL8, TNFα, IL6, 
IL1β, IFNγ, as well as proinflammatory enzymes like inducible Nitric Oxide Synthase and 
cyclooxygenase-2 [131]. In an animal model of ALI caused by SARS-CoV-1 infection, the generation 
of oxidized low-density lipoprotein (OxLDL) enhanced the innate human immune activity through Toll-
like receptor 4 (TLR4)/NF-kB signalling pathway and subsequent excessive production of IL-6 by 
alveolar macrophages [132]. The fact that antioxidants such as vitamin E, green tea polyphenols, L-
cysteine, thiols and N-acetylcysteine (NAC) can block the activating effects of almost all stimuli on 
NF-κB further confirms the possible role that ROS play in NF-κB activation [133, 134].
Ozone therapy decreases the level of NLRP3 inflammasome either directly or via Nrf2 activation/ROS 
reduction/NF-kB inhibition pathway [112]. Decreasing levels of ROS or inhibition of NF-κB prevent 
components of the NLRP3 inflammasome protein from being assembled, thus subsequently reducing 
its activity [135-138]. 

3.7. Ozone therapy and COVID-19

A mixture of oxygen-ozone (O2-O3) infusion therapy has proven beneficial for COVID-19 patients 
admitted to forced non-invasive ventilation, contributing to restore their O2 saturation in a relatively 
short time [139]. To date, a few investigations have assessed the effects of ozone therapy in patients 
suffering from COVID-19. A study on 50 ICU patients with ARDS caused by COVID-19 reported 
clinical improvement sustained by increased O2 saturation and PaO2/FiO2 ratio following systemic 
ozone therapy [139]. In addition, thromboembolic and inflammatory markers such as D-dimer, IL-6, 
CRP were significantly reduced in these patients. Similar findings were reported in other clinical studies 
[137-146]. Although O2-O3 autohemotherapy is regarded very safe - having a complication rate as low 
as 0.7/100,000 – and cost-effective, it needs to be delivered using proper devices and adapted to 
different phenotypes of COVID-19 patients [139,147,148].

The Italian Society of Ozone and Oxygen therapy (SIOOT) recently issued a clinical protocol, approved 
by the Italian National Institute of Health (ISS, Italian acronym), for the management of COVID-19 
patients by O2-O3 auto-hemotherapy. The latter protocol stratifies COVID-19 patients into 5 phenotype 
classes, each corresponding to a different therapeutic approach, with phenotypes 1, 2, 3 (early stages 
COVID-19 infection) being more responsive to O2-O3 therapy (Table 3). Homogenous O2-O3 
mixtures need to be produced with a precise and easily adjustable concentration, using devices made of 
ozone-resistant materials. O2 saturation of COVID-19 patients treated by O2-O3 therapy needs to be 
monitored on a daily basis, whereas laboratory tests (CRP, fasting glucose, ALT, creatinine, leukocytes, 
LDH, pro-calcitonin, L-6, among others) can be weekly checked [139,149]. 

The mechanisms of O2-O3 therapy against COVID-19 is still unknown, but the activation of Nrf2 
induced by ozone appears to suppress the production of pro-inflammatory cytokines, hence modulating 
the hyper-coagulate state associated with severe forms of COVID-19 [128,139]. Furthermore, O2-O3 
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seems capable to directly inactivate coronaviruses spike envelope proteins - abundant of cysteine and 
tryptophan amino acids - thereby interfering with the binding of SARS-CoV-2 with ACE2 receptor 
[150]. The binding of SARS-CoV-2 with the ACE2 receptor may also be prevented by the inhibition of 
the palmytoilation of the spike envelope mediated by nitric oxide signalling pathways, also enhanced 
by O2-O3 [151,152]. 

4. CONCLUSIONS

Ozone therapy could be a potential resource to modulate the patient immune response against SARS-
CoV-2, contributing to contain the cellular oxidative stress of COVID-19 pneumonia and breaking the 
vicious cycle of cytokine storm observed in severe forms of the disease. Ozone therapy may also be a 
useful complementary treatment to be considered in patients suffering from early stage COVID-19 
pneumonia, to prevent the progression to life-threatening disease. 
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Figure 1. Possible mechanisms by which ozone therapy can reduce oxidative stress and disease 

severity in COVID-19 patients. Green lines denote activating effects and red lines denote 

inhibiting effects. NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; 

Nrf2, Nuclear factor erythroid 2-related factor 2; RAAS, Renin Angiotensin Aldosterone 

System
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Table 1. Experimental animal studies on antioxidative effects of ozone therapy; CAT= catalase; GSH= glutathione; 

GSH-Px=glutathione peroxidase; IRI= Ischemia-Reperfusion Injury; SOD= superoxide dismutase; TAC= Total 

Antioxidant Capacity.

AUTHORS YEAR
SAMPLE 

SIZE

INVESTIGATED 

CONDITIONS/TISSUES
OUTCOME REFERENCE

Peralta C et al. 1999 N=18 Hepatic IRI
Increase in SOD and 

preservation of GSH level
[94]

Ajamieh H et al. 2004 N=60 Hepatic IRI Increase in SOD activity [93]

Gonzalez R et al. 2004 N=48
Cisplatin-induced acute 

nephrotoxicity

Increase in GSH, SOD, CAT, 

and GSH-Px
[95]

Onal O et al. 2015 N=28 Intestinal IRI
Increase in SOD , GSH-Px, 

CAT and TAC
[97]

Kurtoglu T et al. 2015 N=32
Contrast-induced 

nephropathy

increase in renal antioxidant 

activity
[96]

Naserzadeh P et al. 2017 N=40 Brain and cochlear IRI
Increase in enzymatic and non-

enzymatic antioxidants
[98]

Kal A et al. 2017 N=14 Retinal IRI
Increase in SOD, GSH-Px and 

TAC
[99]

Naserzadeh P et al. 2019 N=40 Testicular IRI Increase in antioxidant capacity [100]
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Table 2. Experimental Human clinical studies on the antioxidative effects of Ozone therapy. AOPP= advanced oxidation protein 

products; BAP= biological antioxidant potential; CAT= catalase; CRP,C-reactive protein; FRAP= ferric reducing ability of plasma; 

FiO2=Fraction of inspired oxygen; G6PD= glucose 6 phosphate dehydrogenase; GGT= glutamyl transferase; GSH=glutathione; 

GSH-Px=glutathione peroxide; MDR-TB= multidrug resistance tuberculosis; MDA= malondialdehyde; NO= nitric oxide; 

PaO2=Partial pressure of oxygen; PP= peroxidation potential; ROM= reactive oxygen metabolites; SOD= superoxide dismutase; 

TH=total hydroperoxides.

AUTHORS YEAR
SAMPLE 

SIZE

INVESTIGATED 

CONDITIONS/TISSUES
OUTCOME REFERENCE

Hernandez F et al. 1995 N=22 Myocardial Infarction Increase in GSH-Px and G6PD [107]

Martinez-Sanchez G et al. 2005 N=101 Diabetic foot

Activation of SOD and 

normalization of organic 

peroxides

[112]

Inal M et al. 2011 N=11 Healthy subjects
Increase in SOD and CAT and 

decrease in MDA
[102]

Emma BJ et al. 2012 N=40 Non-small cell lung cancer
Decrease in dROM and increase 

in BAP
[105]

Martinez-Sanchez et al. 2012 N=53 Coronary Artery Disease
Increase in GSH and FRAP and 

decrease in PP, AOPP and MDA
[106]

Re L et al. 2014 N=6 Healthy subjects
Increased activities of SOD and 

CAT
[101]

Fernandez OSL 2016 N=40 Rheumatoid Arthritis
Increase in SOD, CAT, GSH and 

decrease in MDA, NO, AOPP
[104]

Buyuklu M et al. 2017 N=40 Heart Failure

Increase in SOD, CAT, GSH, 

GSH-Px and decrease in NO, 

MDA

[108]

Delgado-Roche L et al. 2017 N=28 Multiple Sclerosis

Increase in GSH and decrease of 

oxidative damage on proteins 

and lipids

[109]
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Totolici IP et al. 2017 N=10
Cancer patients receiving 

palliative care
Increase in SOD and GSH-Px [114]

Shah MA et al. 2018 N=12 Type II Diabetes
Decrease in CRP and biomarkers 

of lipid and protein oxidation
[111]

Loprete F et al. 2019 N=45
Healthy subjects and with 

various diseases

Decrease in total oxidizing 

capacity and increase in 

antioxidant response

[103]

Shah MA et al. 2019 N=7 MDR-TB Increase in SOD [110]

Fernandez OSL et al. 2020 N=40 Knee osteoarthritis
Increase in GGT, CAT, GSH and 

decrease in MDA, TH
[113]

Franzini M et al 2020 N=50

Patients undergoing ICU 

hospitalization for COVID-

19

A notable decline of 

inflammatory and 

thromboembolic markers (CRP, 

IL-6, D-dimer) and improvement 

in the respiratory and gas 

exchange markers

[139]

Tascini C et al 2020 N=60

In patients affected by mild 

to moderate COVID-19 

pneumonia

Lower PaO2/FiO2 and SpO2/FiO2 

ratio and lower lymphocytes 

count.

[145]
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Table 3: Six different phenotypes to various therapeutic protocol

Phenotype 

class
Clinical Pattern Therapeutic Management

Discharge

2-3 MAHT per week for 2-3 weeks (40-50 mg/150-200 cc ozone in 

150/200 cc blood)

Ozone oil (RINOZONE) nasal spray 2/day 

1

Fever 

With/without respiratory symptoms

Negative chest X ray

Normal pO2
Ambient air sanitation (using AirKing)

Admission and follow up

3 MAHT per week for 3 weeks (40-50 mg/200 cc ozone in 200cc blood) 

Rinozone spray (ozonized oil) 2/3 times per day

to drink (2 glasses/8h)
Hyper-ozonized water

mouth and eye rinses

2

Fever

GGO (at chest X ray) OR low pO2

Ambient air sanitation (using AirKing)

Sub-intensive care needed

O2 therapy (15 L/m)

4 MAHT per week for 3 weeks (40-50 mg/150-200 cc ozone in 150/200 cc 

blood)

Rectal insufflation with ozone (20-30 mg/100 cc)

Ozone oil (RINOZONE) nasal spray 2-3/day 

to drink (2 glasses/8h)
Hyper-ozonized water

mouth and eye rinses

3

Fever

Multiple GGO (at chest X ray)

Low pO2

Ambient air sanitation (using AirKing)

CPAP 

1st week:  1 MACHT/day for 7 days a week (40-50 mg/200 cc ozone in 

200 cc blood)

2nd week: 4 MACHT/week (40-50 mg/200 cc ozone in 200 cc blood)

4 Pre-ARDS

3rd week: 3 MACHT/week (40-50 mg/200 cc ozone in 200 cc blood)
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Rectal insufflation with ozone (20 mg/100 cc)

Ozone oil (RINOZONE) nasal spray 2-3/day

to drink (2 glasses/8h)
Hyper-ozonized water

mouth and eye rinses

Ambient air sanitation (using AirKing)

CPAP attempt (in case of WET interstitial syndrome) 

Intubation (in case of DRY Interstitial syndrome)

1 MAHT/day for 5 days/week (40-50 mg/200 cc ozone in 200cc blood)

Rectal insufflation (20 mg/100 cc ozone) for 4 weeks

Ozone oil (RINOZONE) nasal spray 2-3/day

to drink (2 glasses/8h)
Hyper-ozonized water

mouth and eye rinses

5

ARDS

Very low pO2 (up to 35-40 mmHg)

Pulmonary Interstitial syndrome

Ambient air sanitation (using AirKing)

Oxygen-ozone (O2-O3) immunoceutical therapy 

4 cycles of O2-O3  treatment

6 ARDS

interstitial pneumonia (at chest  CT)

O2-O3 once a day  for 5 consecutive days  by 45μg/ml O2-O3mixture 

(Multioxygen Medical95 CPS)  with 3-5 (median = 4) cycles (100–200 ml 

of  O2-O3)

MAHT: Major Auto-Hemo Therapy

CPAP: Continuous Positive Airway Pressure
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Graphical Abstract: A scheme revealing angiotensin-converting enzyme 2 (ACE2) receptor-

mediated COVID-19 following SARS-CoV-2 infection together with the mechanism of Ozone (O3)
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Highlight

COVID-19 activates RAAS which induces oxidative stress leading to cytokine storm.

Ozone therapy can reduce oxidative stress.

Ozone therapy might be an excellent option as a complementary treatment for COVID-19.


